Key Features

Key Features

Tracing Capabilities

LLM Call Tracing

Monitor and analyze LLM interactions with detailed metrics:

  • Input/output tokens

  • Response times

  • Cost tracking

  • Model parameters

  • Prompt analysis

@tracer.trace_llm("market_analysis")
async def analyze_market(data):
    response = await openai.chat.completions.create(
        model="gpt-4o-mini",
        messages=[{"role": "user", "content": f"Analyze this market data: {data}"}]
    )
    return response.choices[0].message.content

Tool Tracing

Track tool usage and performance:

  • Execution time

  • Input/output validation

  • Error rates

  • Usage patterns

@tracer.trace_tool("data_processor")
def process_market_data(raw_data):
    # Processing logic
    return processed_data

Agent Tracing

Monitor agent behavior and decision-making:

  • Task decomposition

  • Tool selection

  • Goal achievement

  • Interaction patterns

@tracer.trace_agent("trading_agent")
def execute_trade_strategy(market_conditions):
    # Trading logic
    return trade_decision

Monitoring Features

Real-time Dashboard

  • Live execution tracking

  • Interactive visualizations

  • Performance metrics

  • Resource utilization

Data Storage

  • SQLite backend

  • JSON log files

  • Custom storage adapters

  • Data export capabilities

Analytics

  • Token usage trends

  • Cost analysis

  • Performance bottlenecks

  • Error patterns

Evaluation Tools

  • Goal decomposition efficiency

  • Tool usage effectiveness

  • Response quality metrics

  • Cost optimization insights

Last updated