Key Features
Key Features
Tracing Capabilities
LLM Call Tracing
Monitor and analyze LLM interactions with detailed metrics:
Input/output tokens
Response times
Cost tracking
Model parameters
Prompt analysis
@tracer.trace_llm("market_analysis")
async def analyze_market(data):
response = await openai.chat.completions.create(
model="gpt-4o-mini",
messages=[{"role": "user", "content": f"Analyze this market data: {data}"}]
)
return response.choices[0].message.content
Tool Tracing
Track tool usage and performance:
Execution time
Input/output validation
Error rates
Usage patterns
@tracer.trace_tool("data_processor")
def process_market_data(raw_data):
# Processing logic
return processed_data
Agent Tracing
Monitor agent behavior and decision-making:
Task decomposition
Tool selection
Goal achievement
Interaction patterns
@tracer.trace_agent("trading_agent")
def execute_trade_strategy(market_conditions):
# Trading logic
return trade_decision
Monitoring Features
Real-time Dashboard
Live execution tracking
Interactive visualizations
Performance metrics
Resource utilization
Data Storage
SQLite backend
JSON log files
Custom storage adapters
Data export capabilities
Analytics
Token usage trends
Cost analysis
Performance bottlenecks
Error patterns
Evaluation Tools
Goal decomposition efficiency
Tool usage effectiveness
Response quality metrics
Cost optimization insights
Last updated